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Geometry of conformal mechanics 
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Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Head Post Office, 
PO Box 79, Moscow, USSR 

Received 6 July 1988 

Abstract. Conformal mechanics, the simplest conformal field theory, is reformulated as a 
d = 1 non-linear sigma model on the group S0(1,2) .  Its action and equation of motion 
are shown to have a simple representation in terms of corresponding Cartan forms. The 
equation of motion amounts to certain algebraic relations between these forms which define 
a class of geodesics on S0(1 ,2) .  Our geometric approach demonstrates deep analogies 
between the d = 1 conformal mechanics and the d = 2 Liouville theory. It is equally 
applicable to more complicated cases of superconformal mechanics and can be used to 
deduce the equations of the latter in a manifestly invariant superfield form. 

1. Introduction 

Conformally invariant field theories are of use in a wide range of phenomena. 
Conformal models in two dimensions are of particular interest as they constitute a 
field-theoretical basis of strings and superstrings. They describe possible string compac- 
tifications, provide explicit field realisations of Virasoro and super-Virasoro algebras 
and make it easy to establish a correspondence between the string theory and the d = 2 
statistical systems, etc (see, e.g., Goddard and Olive 1986). The geometric structure 
of these models is expected to encode the characteristic features of the geometry 
underlying string and superstring dynamics and so it deserves thorough analysis. 

Many aspects of d = 2 field theory are well modelled by its d = 1 prototype, i.e. 
the quantum mechanics. In particular, the theories of a point particle and a super- 
particle have been intensively studied in recent years, with attention focusing on their 
similarities to the string and superstring theories. A good deal of attention has been 
paid to supersymmetric quantum mechanics which has interesting applications in its 
own right (see, e.g., Witten 1981). In view of the important role of conformal field 
theory it seems instructive to study conformal (De Alfaro et a1 1974) and superconfor- 
mal (Akulov and Pashnev 1983, Fubini and Rabinovici 1984) mechanics as these 
provide the simplest examples of such a theory. They reveal interesting analogies with 
the special class of d = 2 conformal models, namely the Liouville and super-Liouville 
models. The latter have profound implications in string and superstring theories (see, 
e.g., Polyakov 1981a, b, Gervais and Neveu 1982) and exhibit remarkable geometric 
properties, such as full integrability. 

In the pioneering paper by De Alfaro et a1 (1974) as well as in subsequent papers 
(Akulov and Pashnev 1983, Fubini and Rabinovici 1984) devoted to supersymmetric 
versions of conformal mechanics the main emphasis was on quantum mechanical 
aspects of these models (the spectrum, the structure of Hilbert space, etc). At the same 
time, their basic geometry was not understood in full generality even at the classical 
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level. Such an understanding might be conducive both to achieving a deeper insight 
into the geometry of d = 2  conformal theories (e.g. the Liouville and super-Liouville 
theories) and to constructing higher- N superextensions of conformal mechanics?. Up 
to now, only the N = 2 and N = 4 superconformal mechanics have been constructed 
(Akulov and Pashnev 1983, Fubini and Rabinovici 1984). A manifestly invariant 
superfield off-shell formulation was given only for the N = 2 case (Akulov and Pashnev 
1983). 

In the present and forthcoming papers we propose a universal geometric framework 
for treating conformal mechanics and its superconformal extensions. These systems 
will be shown to be related to the geodesic motion on group manifolds of d = 1 
conformal and superconformal groups. The basis of our consideration is the covariant 
reduction method already developed by two of us (Ivanov and Krivonos 1983, 1984b) 
for application to d = 2 Liouville-type systems. This proved to be an effective tool for 
algorithmic construction of higher- N superextensions of the Liouville equation and 
was recently used to set up a new wide class of d = 2  superconformal sigma models 
with the Wess-Zumino action (Ivanov and Krivonos 1984a, c, d, Ivanov et a2 1988). 
Geometrically, this method amounts to singling out certain finite-dimensional geodesic 
hypersurfaces in infinite-dimensional coset manifolds of d = 2 conformal and supercon- 
formal groups. The Liouville and super-Liouville equations naturally emerge as the 
most essential conditions among those specifying these hypersurfaces. To put the 
method into use, one merely needs to know the structure relations of the corresponding 
d = 2 superconformal algebra. 

The equations of conformal and superconformal mechanics are generated when 
applying the same techniques to the group spaces of d = 1 conformal and superconfor- 
mal groups. These groups are finite-dimensional so everything is simpler than in the 
d = 2 case. This makes it possible to understand more clearly the geometric meaning 
of covariant reduction. 

In the present paper we give an account of our approach by the simplest example 
of bosonic ( N  = 0) conformal mechanics. Our consideration will be purely classical. 
The supersymmetric case will be treated in a forthcoming paper where we will construct 
the off -shell superfield formulation of N = 4 superconformal mechanics. 

This paper is organised as follows. In 9 2 we interpret conformal mechanics in 
terms of Cartan 1-forms on the parameter space of the d = 1 conformal group SO( 1,2) 
subject to a kind of covariant reduction. In 9 3 we explain the geometric meaning of 
this procedure and prove that the equation of conformal mechanics defines a class of 
geodesics on the group manifold. A simple geometric method of integrating this 
equation is also presented. It admits a straightforward extension to more complicated 
cases including the supersymmetric case. 

In the appendix we establish the relationship with the customary description of 
geodesics in terms of the metric on the manifold. 

2. Conformal mechanics and the non-linear realisation of the group S0(1,2) 

We begin by recalling the basics of conformal mechanics. It is defined by the equation 
(De Alfaro et a1 1974) (we consider the one-component case): 

P ( t )  = Y 2 / P 3  [ - y 2 ]  = cm-2 [ p ]  = cmO (2.1) 

t By N we mean the number of real spinor generators. 
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which follows from the action 

The system (2.1) and (2.2) respects invariance under transformations of the d = 1 
conformal group SO( 1,2): 

(2.3) 6t = a + 6 t +  ct2 = f (  t )  

M t )  =f." 
where a, b, c are, respectively, infinitesimal parameters of d = 1 translation (L - ' ) ,  
dilatation (Lo)  and conformal boost ( J L + ~ ) .  The generators L,  form the algebra 
so( 1,2) - sl(2, R ) :  

$L,, L m 1 =  ( n  - m ) L + m  n, m = -1,O, 1. (2.4) 

(The simplest representation of L, is via Pauli matrices, L,l = $ ( T I  T iT2), Lo = $i.r3.) 
This notation demonstrates that SO( 1,2) is a finite-dimensional prototype of d = 2 
conformal (i.e. Virasoro) algebra (and enters into the latter as a maximal subalgebra). 

Our aim is to relate the system (2.1) and (2.2) to the geometry of the group SO( 1,2). 
It will be convenient to choose the following parametrisation of this group: 

(2.5) g(x', x2, x3) = exp(ix'L-,) exp(ix2L+,) exp(ix310). 

Non-linear S0(1 ,2)  transformations in the space of parameters { x i }  are induced by 
left multiplications of group element (2.5): 

(2 .6)  go(a, 6, c)g(x', x2, x3) = g(x", x2', x3') 

6x' = a +  bx'+ c ( x ' ) ~ =  f (x')  

ax2 = f f "(XI)  - f '(x1)xZ 

ax3 = f ' ( X I ) .  , 
It is evident that x' and exp(ix3) transform just as the quantities t and p in (2.3). In 
what follows, this will allow us to identify both sets. The property that the line 
submanifold {x'}  is closed under the action of S0(1 ,2)  is related to the fact that x '  
parametrises the left coset of S0(1 ,2)  over the subgroup with generators L+', Lo. 

The local geometric properties of the group manifold {XI} are specified by the 
left-invariant Cartan 1-forms 

g-' dg = iw"L, (2.8) 

w- '  = exp( -x3) dx' 

W O  = dx3 - 2x2 dx'  (2.9) 

w+'  = e ~ p ( x ~ ) [ d x ~ + ( x ~ ) ~  dx'] 

which are none other than the SO(1,2) covariant differentials of coordinates. The 
invariant line element dS2 is constructed from these forms. Representing L, by Pauli 
matrices and choosing an appropriate normalisation, dS2 can be written as 

dS2 = -Tr(g-' dg g-' dg) = 2w-'w+' - f w o u o  

= 2dx' dx2 - f( dx3)* + 2x2 dx' dx3 (2.10) 

= g, dx'  dx'. 
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Let us now identify x '  with the time t and consider an arbitrary curve in {x'}, 

Now the group S0(1,2)  is parametrised by the time t and the Goldstone fields ~ ' ( t ) ,  
x3( t )  which specify the embedding of the curve in {xi} and correspond to the conformal 
boost and dilatation, respectively. Thus we are left with the non-linear realisation 
(Coleman et a1 1969, Callan er a1 1969, Volkov 1973, Ogievetsky 1974) of the d = 1 
conformal group. At this stage it is convenient to pass to the quantities with physical 
dimension [(  t ]  = cm, [x'] = cm-', [x'] = cm'), making use of the automorphism of the 
algebra (2.4) L-, +&,, L,, + f - IL+ ' ,  Lo+ Lo wheref is an arbitrary constant (it can 
be dimensionful). 

So far, our consideration has been purely kinematical; the t dependence of fields 
x2( t ) ,  x3( t )  has been unrestricted. Just as in the case of non-linear realisations of the 
d = 2 conformal group (Ivanov and Krivonos l983,1984b), the dynamics arises as a 
result of imposing the covariant reduction conditions on coordinates { t ,  x2( t ) ,  x3( t ) } .  
In general this reduction proceeds as follows (Ivanov and Krivonos 1983, 1984b). All 
the Cartan forms, except for those belonging to some subalgebra of the initial algebra, 
are set equal to zero. In the d = 2 case such a subalgebra was chosen to be either 
so( l ,2)  or the algebra of the d = 2 PoincarC group. For the corresponding dilaton 
field there appeared, respectively, either the Liouville equation or the free massless 
one. In the present case, we will perform the reduction to a subalgebra with the one 
generator 

One may check that this generator corresponds to the compact so(2) subalgebra of 
so( l ,2) .  Thus we impose the constraints 

(2.13) 
which amount to the set of Pfaff equations 

= 0+;a3 = x2 ( 2 . 1 4 ~ )  
(2.14b) 

The first one ( 2 . 1 4 ~ )  is kinematical; it covariantly expresses the Goldstone field x2 as 
the derivative of the dilaton, thereby realising the inverse Higgs phenomenon (Ivanov 
and Ogievetsky 1975). Indeed, it follows from the transformation laws (2.7) that x2 
transforms just as $a'. On substitution of the expression for x2 into (2.14b) the latter 
becomes 

(2.15) 
which is easily recognised as the equation of conformal mechanics (2.1) after identifying 
p (  t )  = exp($x3( t ) )  and y 2  = m2.  

Thus, we have derived equation (2.1) starting with the group space of SO(1,2) 
where SO( 1,2)  is realised by left shifts, and further constraining covariant differentials 
of coordinates by (2.14). The geometric meaning of this procedure will be clarified in 
5 3. Here we would like to note that one might choose a more general combination 
of S0(1,2)  generators than in (2.12): 

(2.16) 
Then, instead of (2.15), one would have the more general set of equations 

(2.14 a ') 
(2.146') 

t = x '  x2 = x'( t )  x3 = x3( t ) .  (2.11) 

Ro = L-, + rn2L+'. (2.12) 

g-' dg  = gR1 dg, = iw-'Ro 

w '  = m2w-'+xz+ (x2l2 = m2 exp(-2x3). 

i3 +$(a3)' = 2m2 exp( -2x3) 

do = L-, + $L+, +2aL0.  

W O =  2aw-'+X3 = x2+ a exp(-x3) 
w + l  = f i Z w - '  ~ x ~ + ( x ' ) '  = rii* exp(-2x3). 
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Substitution of (2.14a') into (2.14b') produces (2.15) with m 2  replaced by G 2 -  CY': 

j t 3 + $ ( X 3 ) ' =  2 ( G 2 - a 2 )  exp(-2x3). (2.17) 

So, for a*< rG* we have the standard conformal mechanics while for a*> 6' we get 
the 'hyperbolic' version of (2.1) (De Alfaro et a1 1974). For CY'= G 2  the equation 
reduces to the free one. These three different situations correspond to three possible 
non-equivalent covariant reductions of the manifold {x'}. Indeed, it is a simple exercise 
to check that the generators (2.16), with the parameters G 2  and a 2  varying within the 
above three domains, cannot be related to each other by any SO( 1,2) rotation and so 
belong to different orbits in the group space of SO(1,2). Actually, the term in Eo 
which contains Lo can always be removed by a proper SO( 1,2) rotation: 

R ~ =  L- ,  + (rii2 - a * ) ~ + ~  = exp(-iaL+,)E, exp(iaL+,). (2.18) 

This amounts to a constant right shift of g ( x ' ,  x 2 ,  x 3 )  as 

g(x ' ,  2, x3) = g ( x ' ,  x 2 ,  x3) exp(iaL+l)+J2 = x 2 +  a exp(-x3). (2.19) 

In terms of x"', t and x3, the set (2.14') has the same form as (2.14), with m 2  replaced 
by G 2 - a 2 .  Different types of covariant reduction are thus associated with three 
non-equivalent one-dimensional subalgebras of so( 1,2):  

L-, + m2L+, L-, - m2L+, L-,. (2.20) 

Recall that the first subalgebra is so(2) while the second one is so(1, l ) .  As will be 
shown in 3 3, these three patterns correspond to three non-equivalent classes of 
geodesics on S0(1,2) .  

To close this section, we present a simple invariant first-order action for the system 
(2.14) in terms of differential 1-forms (2.9): 

[a+'+ m 2 a - ' ]  = -- dt{e~p(x~(t))[X~(t)+(x~)~]+ m 2  exp(-x3(t))}. 
A 2  ' I  

(2.21) 

Varying x2 yields ( 2 . 1 4 ~ ) .  Inserting this constraint back into (2.14b) puts the latter 
into the standard second-order form (2.1) (with p (  t )  = exp($x3( t ) ) ) .  

3. Geometric interpretation 

Let us explain the geometric meaning of constraints (2.14). We will discuss the 
reduction to the so(2) subalgebra (2.12), keeping in mind the relation (2.18) and the 
fact that the generators of other possible reduction subalgebras (listed in (2.20)) follow 
from Ro (2.12) either by substitution m + im or by putting m 2  = 0. 

Differential forms (2.9), being covariant differentials of SO( 1,2)  coordinates X I ,  

specify infinitesimal shifts of x '  along three independent directions in {x'}. The 
constraints (2.14) restrict this motion to the shift along a curve generated by the right 
action of the Abelian subgroup with generator Roe Indeed, solving (2.13) for g R (  t, x'( t ) ,  
~ ' ( t ) ) ,  we find that the most general solution is 

g R ( f ,  x2, x') = g o ( c ' ,  c2, c') exp[iT(t)(L-, + m ' ~ , ~ ) ]  (3.1) 
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where c‘ are integration constants and 

dT = exp(-x’(t)) dt. (3.2) 

It is easy to argue that (3.1) defines a geodesic on the manifold {x’}. It is known 
(see, e.g., Gilmor 1974), that the geodesic motion on the coset or group manifolds is 
generated by the right action of the group on the coset elements. In the group space, 
any such element specifies a point whence some geodesic grows. The geodesic as a 
whole is restored by multiplying this fixed element from the right by an element of a 
certain Abelian subgroup having as the group parameter the natural parameter along 
the curve (the group is assumed to be taken in the exponential parametrisation). The 
choice of this subgroup fixes the tangent to the geodesic at the origin. Thus, the 
geodesic on a group space is completely defined by choosing an initial group element 
and some one-parameter subgroup acting on the former element from the right. 

The formula (3.1) fits ideally into this general scheme. To prove that the S0(1,2)  
element (3.1) defines a geodesic, we merely need to show the identity of T with the 
natural parameter S. Inserting (2.14) into the definition (2.10) and taking account of 
(3.2) one gets 

dS2 = 2m2w-’w-’ = 2m2 exp(-2x3)(dt)’ = 2 m 2 ( d r ) * J d s / d r  = a m  (3.3) 

i.e. T actually coincides with s (up to a constant shift and rescaling). 
Expression (3.1) provides the general solution to the constraints (2.14) and, hence, 

to the conformal mechanics equation (2.15) (or (2.1)) which is equivalent to the set 
(2.14). So we have shown that this equation describes a class of geodesics on the 
group SO( 1,2),  with the coordinate X I  = t chosen as the parameter along the geodesic. 
For these geodesics ds2 > 0, so they can be called ‘time-like’. Two other types of 
geodesics on SO( 1,2), which are obtained by the reduction to two other subalgebras 
among those listed in (2.20), correspond, respectively, to d s 2 < 0  and ds2=0.  Thus, 
they are ‘space-like’ or ‘light-like’. In the latter case (described by the free m2 = 0 
version of (2.15)) IS1 cannot serve as the evolution parameter, while T or t still can. 
In the appendix we establish the explicit relation to a more familiar description of 
geodesics in terms of the metric g, introduced in (2.10). 

The geometric approach allows us to render a transparent meaning to the procedure 
of integrating (2.1). It is reduced now to finding the explicit expressions for the original 
variables {x’} in terms of elements of the on-shell matrix (3.1). The constant factor 
go entering into (3.1) actually involves only two independent integration constants 
which parametrise the coset SO( 1,2) /S0(2) .  The third constant can always be absorbed 
into a redefinition of 7: It is convenient to choose go to be 

go = exp(ic’L-,) exp(ic’~,). (3.4) 

t = c1 + eC3m-’ tan(m7) 

xz =$exp(-c3)m s i n ( 2 m ~ )  (3.5) 

Substituting the expression for gR(t, x2, x’) (2.5) into (3.1) one finds 

x3 = c3 - 2 In cos( m7) 

which yields the explicit parametrisation of the geodesic in terms of proper time ‘T 

(or s). In accordance with the geometric interpretation of (3.1) given above, we have 
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(use is made of (3.3)): 

whence it follows that the constants c', c3 parametrise an initial point on the geodesic. 
We also see that, up to an unessential rescaling, the coupling constant m defines the 
components of the tangent vector to the geodesic at this point. 

It is a simple exercise to extract from equations (3.5) the general solution of (2.1), 

p(t)=exp($x'(t)) = [ A ( I + ( B / A ) ~ ) ~ + A - ~  m2t2]1'2 (3.7) 
where 

A = exp( c') + m'( c')' exp( - c 3 )  B = - c 'm2  exp(-c'). (3.8) 
Any other form of the solution is reduced to (3.7) by a redefinition of integration 
constants. 

One may check that the general solution (3.7) is invariant under the action of the 
SO(2) subgroup by 

R = L-' + 2(B/A)L0+ A-'( m2  + B2)L1  (3.9) 
S * p ( l )  =tfR(t)p(t) -fR(t)b(f) = o  (3.10) 
fR( t )  = a [ l +  2(B/A)t + A-2( m 2 +  B2)t2]. (3.11) 

Thus, there occurs the dynamical spontaneous breaking of SO( 1,2)  to SO(2) a R (De 
Alfaro et a1 1974). This phenomenon has a simple interpretation in terms of geodesics. 
The generator R is related to R,, (2.12) via the S0(1 ,2)  rotation by the element go (3.4): 

Therefore, the left action of exp(iaR) on gR(xl ,  x2, x3) (3.1) merely results in the shift 
of proper time T by an amount aA-', without affecting the shape of the geodesic, 
x ' ( ~ ) + x ~ ( ~ + a A - ' ) .  In other words, the left action of exp(iaR) generates the shift 
along a given geodesic. The action of S0(1,2) /S0(2)  transformations changes the 
integration constants and so transforms one geodesic into another. 

It is worthwhile to note that the integration of (2.1) can also be viewed as a 
reparametrisation of the group space of S0(1,2).  Indeed, let us choose from the 
beginning a different parametrisation of SO( 1,2):  
g(x', x2, x3) = g(c', c', T )  = exp[ic'~~,]exp[ic3~o]exp[i~(~~l + m 2 ~ + l ) ] .  
Then (3.5) give the relation between the two equivalent parametrisations of S0(1,2).  
The Cartan forms in this new parametrisation are as follows: 

R = A-'gO[L-, + m2L+l]g,'. 

U- '  = exp(-c3)dc' c o s ( 2 m ~ ) + d c ~ ( l / m )  s i n ( 2 m ~ ) + ( l / m ~ ) w * '  
U'= -m exp(-c3)dc' sin(2m.r)+dc3 cos(2m.r) 
U + ' =  m2{dT+i exp(-c3)dc'[l -cos(2m~)]  -(1/2m) dc3 s in(2m~)) .  

One is free to impose the constraints (2.14) on any parametrisation. It is easy to check 
that in terms of new variables these constraints are reduced to 

(3.12) dc'1d.r = dc3/d7 = O j c '  and c3 are constants. 
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Expressing c 1  and c3 in terms of original variables, one obtains two first integrals of 
(2.1) (it is convenient to pass to the variables A and B given by (3.8))f 

A( t )  = ( p  - tb)2 + ( m 2 / p 2 )  t 2  B( t )  = p ( p  - p t )  - ( m 2 / p 2 )  t A = B = O .  
(3.13) 

Note that the variables c’( t ) ,  c3( t )  and T (  t )  are in a sense analogous to the action-angle 
variables of two-dimensional integrable systems. 

We would like to mention that one further way of solving (2.1) is to reduce the 
latter to the harmonic oscillator equation. Introducing p’ = p-l  and going to the proper 
time T by means of (3.2) one may rewrite (2.1) as 

d2p’/d.r2+ m’p’ = 0. 

Solving this equation and expressing T in terms of t from the first-order equation (3.2) 
one arrives again at the expression (3.7). 

4. Conclusions 

In this paper we have demonstrated that the covariant reduction method proposed 
originally for a unified geometric description of Liouville-type systems in two 
dimensions (Ivanov and Krivonos l983,1984b), applies equally as well to d = 1 systems, 
i.e. the models of particle mechanics. The foundations of the method can be clearly 
understood when looking at the d = 1 case. The simple example we have analysed 
here in detail is mostly of an illustrative character, though it would perhaps be of some 
interest to see what implications this geometric picture has for the quantum case. The 
actual power of the covariant reduction approach will be demonstrated in our forthcom- 
ing paper where this technique is applied to the N = 4, d = 1 superconformal group 
SU( 1, i) to construct a manifestly invariant superfield formulation of N = 4 supercon- 
formal mechanics. 

It is worth mentioning that the model we have considered belongs to a wide class 
of completely integrable d = 1 systems. The list of corresponding potentials can be 
found, e.g., in the review by Olshanetsky and Perelomov (1981). An interesting task 
is to reproduce in our approach the remaining potentials from this list (and, perhaps, 
to discover the unknown ones), starting with a non-linear realisation of an appropriate 
group and imposing the covariant reduction constraints on the relevant Cartan 1-forms. 
Also, it would be desirable to understand the relationship with the general method of 
integrating these systems which has been proposed by Olshanetsky and Perelomov. 
The method is based on relating the equation associated with a given integrable potential 
to the free (or geodesic) motion on a certain higher-dimensional auxiliary space. So 
it bears some formal resemblance to our method. We would like to emphasise once 
again that the main merit of our scheme should be seen in its algorithmic character. 
Once one chooses the group and the covariant reduction subgroup (the latter can be 
in general non-Abelian), then deducing the relevant mechanical system and finding 
out its general solution proceeds straightforwardly. The question to be answered is, 
of course, whether all the d = 1 integrable systems can be obtained in this way. 

t Note that the energy H = ( b ) ’ +  m Z / p 2  is expressed in terms of these quantities by the simple formula 
H = A - ‘ [ m 2 + B 2 ] .  
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Now let us dwell on analogies with the Liouville equation which is the simplest 
completely integrable d = 2 system. These analogies are far-reaching, despite the fact 
that in the Liouville case one deals with an infinite number of degrees of freedom. 
This last matter results in one starting with the infinite-dimensional d = 2  conformal 
group. Therefore there appear infinitely many Pfaff equations of the type (2.14a) 
(Ivanov and Krivonos 1983, 1984b). By these equations, the infinitely many fields 
parametrising a coset of the d = 2 conformal group are expressed via a single dilaton 
field. The latter is a direct analogue of the field x3(t). The Liouville equation arises 
analogously to (2.146). The d = 2 counterpart of d = 1 reduction subalgebra so(2) is 
the subalgebra so( 1,2) of the d = 2 conformal algebra. Thus the Cartan form surviving 
the covariant reduction lives on that so( l ,2) .  As a consequence of covariant reduction 
constraints and of the original Maurer-Cartan equations, the remaining form satisfies 
the standard zero curvature condition that expresses the fact of complete integrability 
of the Liouville equation. 

The zero curvature conditions have no analogue in the d = 1 case because of a lack 
of 2-forms in one dimension. However, as we have seen, the first-order covariant 
reduction constraints can still be implemented and these have a transparent geometric 
meaning. Thus it seems that the covariant reduction scheme may bear a deeper relation 
to the concept of integrability than the conventional approach based on the zero 
curvature representation. It would be of interest to extend this scheme to other 
integrable d = 2 systems, in particular to chiral field models. We conjecture that the 
latter models are associated with geodesic hypersurfaces in group manifolds of Kac- 
Moody groups (see, e.g., Dolan 1981). 

As a final remark, we would like to stress that the results of this paper and of 
Ivanov and Krivonos (1983,1984b) demonstrate a close relation between the d = 2 
and d = 1 Liouville-type systems on the one hand and the intrinsic geometry of d = 2 
and d = 1 conformal groups on the other. Perhaps this fact deserves special attention 
in view of the recent growth of interest in the geometry of coset spaces of the d = 2  
conformal group in the context of string field theory (Bowick and Rajeev 1987, Bars 
and Yankielowicz 1987). A finite-dimensional toy model of the latter based on the 
group S0(1,2) was recently considered by Jemenez and Sierra (1988). 

It should be pointed out once more that the basic purpose of the present paper 
was to describe generalities of the d = 1 version of the covariant reduction method. 
Its potentialities and concrete applications for constructing new d = 1 models will be 
considered elsewhere. 
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Appendix. Relation to the standard description of geodesics on S0(1,2) 

We start with the metric gij defined by equation (2.10) 

gu= 1 - 

" i: 1 o \  

2x2 -2 
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The equation for geodesics corresponding to this metric is 
ii + r jk i jkk  = 0 

x i  = x i ( s )  X i  = dxi /ds  lgijxii-l = 1. 
Here rik are Christoffel coefficients calculated by the standard rules of Riemann 
geometry. In components, (A2) amounts to the set 

(A3a) 
(A3b) 
(A3c) 

X I  -xlx3 = 0 

,p+ 2 x 2 i 2 ~ l  + 1 2 2 3  + 2(x2)231~3 = 0 
i 3  - 2 ~ i - 2 ~ 1  - 2x2ii.'i3 = 0. 

Let us show that any solution of (2.14) also solves (A3). Making the change of 
variables S + x ' =  t in (A3) and using (3.3), it is easy to check that (A3a) is satisfied 
identically. The rest of equation (A3) is checked by using (2.14) repeatedly. 

Conversely, one may obtain the set (2.14) as a result of partial integration of ('43). 
Specialising to the 'time-like' case ds2 > 0, one readily obtains 

dx ' lds  = p1 exp(x3) 
x -7x - p 2  exp(-x3) 
4x3+a(x3)2 = ( 1 / 2 p 3  exp(-2x3) 

('4.4) 2 - 1  3 

where PI and p2 are integration constants and the derivatives are taken with respect 
to t = XI. Upon identifying p2= a and m 2 =  1/2p:, these equations coincide with 
equation (2.14') and (2.17) and so are equivalent to (2.14). It is worthwhile to emphasise 
that the coupling constant m2 appears as an integration constant in this scheme. 

References 

Akulov V and Pashnev A 1983 Teor. Mat. Fiz. 56 344 (in Russian) 
Bars I and Yankielowicz Sh 1987 Phys. Left. 196B 329 
Bowick M and Rajeev B 1987 Phys. Reo. Lett. 58 539 
Callan C, Coleman S, Wess J and Zumino B 1969 Phys. Rev. 177 2247 
Coleman S, Wess J and Zumino B 1969 Phys. Reu. 177 2239 
De Alfaro V, Fubini S and Furlan G 1974 Nuouo Cimento 34A 569 
Dolan L 1981 Phys. Rev. Lett. 47 1371 
Fubini S and Rabinovici E 1984 Nucl. Phys. B 245 17 
Gervais J and Neveu A 1982 Nucl. Phys. B 199 59 
Gilmor R 1974 Lie Groups, Lie Algebras and Their Applications (New York: Wiley) 
Goddard P and Olive D 1986 J. Mod. Phys. A 1 303 
Ivanov E and Krivonos S 1983 Lett. Math. Phys. 7 523 
- 1984a Lett. Math. Phys. 8 39 
- 1984b Teor. Mat. Fiz. 58 200 (in Russian) 
- 1984c Proc. VI1 Int. Conj on Problems of Quantum Field Theory (Dubna JINR D2-84-366) 
- 1984d J. Phys. A: Math. Gen. 17 L671 
Ivanov E, Krivonos S and Leviant V 1988 Nucl. Phys. B 304 601 
Ivanov E and Ogievetsky V 1975 Teor. Mat. Fiz. 25 164 (in Russian) 
Jimenez F and Sierra G 1988 Phys. Lett. 202B 58  
Ogievetsky V 1974 Proc. X Winter School of Theor. Phys. (Karpach) vol 1 (Wroclaw: Polish Academy of 

Olshanetsky M A and Perelomov A M 1981 Phys. Rep. 71 313 
Polyakov A 1981a Phys. Lett. 103B 207 
- 1981b Phys. Lett. 103B 211 
Volkov D 1973 Sou. J. Part. Nucl. 4 3 
Witten E 1981 Nucl. Phys. B 188 513 

Sciences) 117 


